Menjawab:
Penjelasan:
Diketahui bahwa persamaan bx ^ 2- (a-3b) x + b = 0 memiliki satu akar nyata. Buktikan bahwa persamaan x ^ 2 + (a-b) x + (ab-b ^ 2 + 1) = 0 tidak memiliki akar nyata.?
Lihat di bawah. Akar untuk bx ^ 2- (a-3b) x + b = 0 adalah x = (a - 3 b pmsqrt [a ^ 2 - 6 ab + 5 b ^ 2]) / (2 b) Akar akan bertepatan dan nyata jika a ^ 2 - 6 ab + 5 b ^ 2 = (a - 5 b) (a - b) = 0 atau a = b atau a = 5b Sekarang menyelesaikan x ^ 2 + (ab) x + (ab-b ^ 2 + 1) = 0 kita memiliki x = 1/2 (-a + b pm sqrt [a ^ 2 - 6 ab + 5 b ^ 2-4]) Kondisi untuk akar kompleks adalah ^ 2 - 6 ab + 5 b ^ 2-4 lt 0 sekarang membuat a = b atau a = 5b kita memiliki ^ 2 - 6 ab + 5 b ^ 2-4 = -4 <0 Kesimpulan, jika bx ^ 2- (a-3b) x + b = 0 memiliki akar nyata bertepatan maka x ^ 2 + (ab) x + (ab-b ^ 2 + 1) = 0 akan memiliki akar komplek
"Lena memiliki 2 bilangan bulat berurutan.Dia memperhatikan bahwa jumlah mereka sama dengan perbedaan antara kotak mereka. Lena mengambil 2 bilangan bulat berturut-turut dan memperhatikan hal yang sama. Buktikan secara aljabar bahwa ini berlaku untuk setiap 2 bilangan bulat berturut-turut?
Silakan merujuk ke Penjelasan. Ingat bahwa bilangan bulat berurutan berbeda dengan 1. Oleh karena itu, jika m adalah satu bilangan bulat, maka, bilangan bulat yang berhasil harus n + 1. Jumlah dari kedua bilangan bulat ini adalah n + (n + 1) = 2n + 1. Perbedaan antara kotak mereka adalah (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, seperti yang diinginkan! Rasakan Kegembiraan Matematika.!
Catatan menunjukkan bahwa probabilitasnya adalah 0,00006 bahwa mobil akan memiliki ban kempes saat mengemudi melalui terowongan tertentu. Temukan kemungkinan bahwa setidaknya 2 dari 10.000 mobil yang melewati saluran ini akan memiliki ban kempes?
0.1841 Pertama, kita mulai dengan binomial: X ~ B (10 ^ 4,6 * 10 ^ -5), meskipun p sangat kecil, n sangat besar. Karena itu kami dapat memperkirakan ini dengan menggunakan normal. Untuk X ~ B (n, p); Y ~ N (np, np (1-p)) Jadi, kita memiliki Y ~ N (0.6,0.99994) Kami ingin P (x> = 2), dengan mengoreksi menggunakan normal bounds, kita memiliki P (Y> = 1.5) Z = (Y-mu) / sigma = (Y-np) / sqrt (np (1-p)) = (1.5-0.6) / sqrt (0.99994) ~~ 0.90 P (Z> = 0.90) = 1-P (Z <= 0.90) Menggunakan tabel-Z, kita menemukan bahwa z = 0.90 memberikan P (Z <= 0.90) = 0.8159 P (Z> = 0.90) = 1-P (Z <= 0,90) = 1-0,8159 = 0,1841