urutan operasi mensyaratkan bahwa kita berurusan dengan eksponen dalam penyebut terlebih dahulu menggunakan kekuasaan ke kekuasaan.
ini berarti bahwa ekspresi kita sekarang menjadi
Sekarang kita dapat memindahkan faktor dengan eksponen negatif ke sisi berlawanan dari fraksi bar untuk mendapatkan:
yang sekarang membuat semuanya sederhana dengan menggunakan aturan pengurangan untuk eksponen ketika kita membaginya dengan basis yang sama.
yang akhirnya disederhanakan menjadi
Menggunakan +, -,:, * (Anda harus menggunakan semua tanda dan Anda diizinkan untuk menggunakan salah satu dari mereka dua kali; Anda juga tidak diperbolehkan menggunakan tanda kurung), buat kalimat berikut ini benar: 9 2 11 13 6 3 = 45?
9-2 * 11 + 13: 6 * 3 = 45 9-2 * 11 + 13: 6 * 3 = 45 Apakah ini memenuhi tantangan?
Bagaimana Anda menyederhanakan x ^ -2 / (x ^ 5y ^ -4) ^ - 2 dan menulisnya hanya menggunakan eksponen positif?
Jawabannya adalah x ^ 8 / y ^ 8. Catatan: ketika variabel a, b, dan c digunakan, saya mengacu pada aturan umum yang akan bekerja untuk setiap nilai riil dari a, b, atau c. Pertama, Anda harus melihat pada penyebut dan memperluas (x ^ 5y ^ -4) ^ - 2 menjadi eksponen dari x dan y. Karena (a ^ b) ^ c = a ^ (bc), ini dapat disederhanakan menjadi x ^ -10y ^ 8, sehingga seluruh persamaan menjadi x ^ -2 / (x ^ -10y ^ 8). Selain itu, karena a ^ -b = 1 / a ^ b, Anda dapat mengubah x ^ -2 dalam pembilang menjadi 1 / x ^ 2, dan x ^ -10 dalam penyebut menjadi 1 / x ^ 10. Oleh karena itu, persamaan dapat ditulis ulang seperti: (1 / x ^
Bagaimana Anda menggunakan hukum eksponen untuk menyederhanakan ekspresi (-2x ^ 2th) ^ 3 (5xy ^ 3) ^ 2?
-200x ^ 8y ^ 9 (a ^ b) ^ c = a ^ (bc) (a ^ b) (a ^ c) = a ^ (b + c) (abc) ^ d = a ^ db ^ dc ^ d Jadi, kita memiliki: (-2) ^ 3 (x ^ 2) ^ 3y ^ 3 (5) ^ 2x ^ 2 (y ^ 3) ^ 2 (-1) ^ 3 (2) ^ 3 (x ^ 2) ^ 3y ^ 3 (5) ^ 2x ^ 2 (y ^ 3) ^ 2 (-1) ^ 3 (2) ^ 3x ^ 6y ^ 3 (5) ^ 2x ^ 2y ^ 6 (-1) ^ 3 (2 ) ^ 3x ^ 8y ^ 9 (5) ^ 2 -1 (8) (25) x ^ 8y ^ 9 -200x ^ 8y ^ 9