Menjawab:
Penjelasan:
Karena kurva dinyatakan dalam dua fungsi
Sementara
Melihat ke
Bagaimana Anda membedakan persamaan parametrik berikut: x (t) = t / (t-4), y (t) = 1 / (1-t ^ 2)?
Dy / dx = - (t (t-4) ^ 2) / (2 (1-t ^ 2) ^ 2) = - t / 2 ((t-4) / (1-t ^ 2)) ^ 2 dy / dx = (y '(t)) / (x' (t)) y (t) = 1 / (1-t ^ 2) y '(t) = ((1-t ^ 2) d / dt [1] -1d / dt [1-t ^ 2]) / (1-t ^ 2) ^ 2 warna (putih) (y '(t)) = (- (- 2t)) / (1-t ^ 2) ^ 2 warna (putih) (y '(t)) = (2t) / (1-t ^ 2) ^ 2 x (t) = t / (t-4) x' (t) = ((t -4) d / dt [t] -td / dt [t-4]) / (t-4) ^ 2 warna (putih) (x '(t)) = (t-4-t) / (t- 4) ^ 2 warna (putih) (x '(t)) = - 4 / (t-4) ^ 2 dy / dx = (2t) / (1-t ^ 2) ^ 2 -: - 4 / (t -4) ^ 2 = (2t) / (1-t ^ 2) ^ 2xx- (t-4) ^ 2/4 = (- 2t (t-4) ^ 2) / (4 (1-t ^ 2 ) ^ 2) = - (t (t-4
Bagaimana Anda membedakan persamaan parametrik berikut: x (t) = tlnt, y (t) = cost-tsin ^ 2t?
(df (t)) / dt = (ln (t) + 1, -sin (t) - sin ^ 2 (t) - 2tsin (t) cos (t)) Membedakan persamaan parametrik semudah membedakan setiap individu persamaan untuk komponennya. Jika f (t) = (x (t), y (t)) maka (df (t)) / dt = ((dx (t)) / dt, (dy (t)) / dt) Jadi pertama-tama kita tentukan turunan komponen kami: (dx (t)) / dt = ln (t) + t / t = ln (t) + 1 (dy (t)) / dt = -sin (t) - sin ^ 2 (t) - 2tsin (t) cos (t) Oleh karena itu turunan kurva parametrik akhir hanyalah vektor turunan: (df (t)) / dt = ((dx (t)) / dt, (dy (t)) / dt) = (ln (t) + 1, -sin (t) - sin ^ 2 (t) - 2tsin (t) cos (t))
Bagaimana Anda mengubah setiap persamaan parametrik menjadi bentuk persegi panjang: x = t - 3, y = 2t + 4?
Tulis t sebagai fungsi x lalu gantilah fungsi itu ke dalam persamaan untuk y. Persamaan yang dihasilkan adalah y = 2x + 10 t = x + 3 y = 2 (x + 3) + 4 y = 2x + 10