Menjawab:
Nol akan berada di
Penjelasan:
Ketika polinomial sudah diperhitungkan, seperti dalam kasus di atas, menemukan nol itu sepele.
Jelas jika salah satu istilah dalam tanda kurung adalah nol, seluruh produk akan menjadi nol. Jadi nol akan berada di:
dll.
Bentuk umum adalah jika:
maka nol adalah di:
Jadi nol kita akan berada di
Grafik fungsi f (x) = (x + 2) (x + 6) ditunjukkan di bawah ini. Pernyataan mana tentang fungsi yang benar? Fungsi ini positif untuk semua nilai riil x di mana x> –4. Fungsi ini negatif untuk semua nilai riil x di mana –6 <x <–2.
Fungsi ini negatif untuk semua nilai riil x di mana –6 <x <–2.
Nol dari fungsi f (x) adalah 3 dan 4, sedangkan nol dari fungsi kedua g (x) adalah 3 dan 7. Berapakah nol dari fungsi y = f (x) / g (x )?
Hanya nol dari y = f (x) / g (x) adalah 4. Karena nol dari fungsi f (x) adalah 3 dan 4, ini berarti (x-3) dan (x-4) adalah faktor-faktor dari f (x ). Selanjutnya, nol dari fungsi kedua g (x) adalah 3 dan 7, yang berarti (x-3) dan (x-7) adalah faktor-faktor dari f (x). Ini berarti dalam fungsi y = f (x) / g (x), meskipun (x-3) harus membatalkan penyebut g (x) = 0 tidak didefinisikan, ketika x = 3. Itu juga tidak didefinisikan ketika x = 7. Karenanya, kami memiliki lubang di x = 3. dan hanya nol dari y = f (x) / g (x) adalah 4.
Bagaimana Anda menemukan semua nol 4x ^ 3-4x ^ 2-9x + 9 dengan 1 sebagai nol?
3 root adalah x = -3 / 2, 1, 3/2 Catatan Saya tidak dapat menemukan simbol pembagian panjang jadi saya akan menggunakan simbol root kuadrat di tempatnya. f (x) = 4x ^ 3-4x ^ 2-9x + 9 f (1) = 4 * 1 ^ 3-4 * 1 ^ 2-9 * 1 + 9 = 4-4-9 + 9 = 0 Ini berarti bahwa x = 1 adalah root dan (x-1) adalah faktor dari polinomial ini. Kita perlu menemukan faktor-faktor lain, kita melakukan ini dengan membagi f (x) dengan (x-1) untuk menemukan faktor-faktor lain. {4x ^ 3-4x ^ 2-9x + 9} / {x-1} (x-1) sqrt (4x ^ 3-4x ^ 2-9x + 9) Sejak (x * 4x ^ 2) = 4x ^ 3 kita mendapatkan 4x ^ 2 sebagai istilah dalam faktor 4x ^ 2 (x-1) sqrt (4x ^ 3-4x ^ 2-9x