Bagaimana Anda menemukan volume piramida yang dibatasi oleh bidang 2x + 3y + z = 6 dan bidang koordinat?

Bagaimana Anda menemukan volume piramida yang dibatasi oleh bidang 2x + 3y + z = 6 dan bidang koordinat?
Anonim

Menjawab:

#= 6 # unit kubik

Penjelasan:

vektor normal adalah #((2),(3),(1))# yang menunjuk ke arah oktan 1, sehingga volume yang dimaksud berada di bawah bidang dan dalam oktan 1

kita dapat menulis ulang pesawat sebagai #z (x, y) = 6 - 2x - 3y #

untuk #z = 0 # kita punya

  • # z = 0, x = 0 menyiratkan y = 2 #
  • # z = 0, y = 0 menyiratkan x = 3 #

dan

- - # x = 0, y = 0 menyiratkan z = 6 #

ini dia:

volume yang kita butuhkan adalah

#int_A z (x, y) dA #

# = int_ (x = 0) ^ (3) int_ (y = 0) ^ (2 - 2/3 x) 6 - 2x - 3y dy dx #

# = int_ (x = 0) ^ (3) 6y - 2xy - 3 / 2y ^ 2 _ (y = 0) ^ (2 - 2/3 x) dx #

# = int_ (x = 0) ^ (3) 6 (2-2 / 3 x) - 2x (2-2 / 3 x) - 3/2 (2-2 / 3 x) ^ 2 _ (y = 0) ^ (2 - 2/3 x) dx #

# = int_ (x = 0) ^ (3) 12-4 x - 4x + 4/3 x ^ 2 - 6 - 2/3 x ^ 2 + 4x dx #

# = int_ (x = 0) ^ (3) 6- 4 x + 2/3 x ^ 2 dx #

# = 6x- 2 x ^ 2 + 2/9 x ^ 3 _ (x = 0) ^ (3) #

#= 18- 18 + 54/9 #

#= 6 #

Menjawab:

6

Penjelasan:

Kami akan melakukan tiga integral.

Sistem koordinat kartesius adalah yang paling berlaku. Urutan integrasi tidak kritis. Kita akan pergi z pertama, y tengah, x terakhir.

#underline ("Menentukan batas") #

Di pesawat #z = 6 - 2x - 3y # dan di pesawat koordinat #z = 0 # karenanya

# z: 0 rarr 6 - 2x - 3y #

Sepanjang # z = 0 #, # y # mulai dari 0 hingga # 3y = 6 - 2x # karenanya

#y: 0 rarr 2 - 2 / 3x #

Sepanjang # y = 0, z = 0 # karenanya

#x: 0 rarr 3 #

Kami menemukan volume begitu #f (x, y, z) = 1 #. Integral menjadi

# int_0 ^ 3int_0 ^ (2-2 / 3x) int_0 ^ (6-2x-3y) dzdydx #

# = int_0 ^ 3int_0 ^ (2-2 / 3x) z _0 ^ (6-2x-3thn) dydx #

# = int_0 ^ 3int_0 ^ (2-2 / 3x) (6-2x-3y) dydx #

# = int_0 ^ 3 6y-2xy - 3 / 2y ^ 2 _0 ^ (2-2 / 3x) dx #

# = int_0 ^ 3 (6 (2-2 / 3x) - 2x (2-2 / 3x) - 3/2 (2-2 / 3x) ^ 2) dx #

# = int_0 ^ 3 (12 - 4x - 4x + 4 / 3x ^ 2 - 3/2 (4 - 8 / 3x + 4 / 9x ^ 2)) dx #

# = int_0 ^ 3 (12 - 8x + 4 / 3x ^ 3 - 6 + 4x - 2 / 3x ^ 2) dx #

# = int_0 ^ 3 (6 - 4x + 2 / 3x ^ 2) dx #

# = 6x - 2x ^ 2 + 2 / 9x ^ 3 _0 ^ 3 #

#=6(3) - 2(3)^2 +2/9(3)^3 #

#=6#